Introduction to Lean

DAAN VAN GENT AND JESSE VOGEL

1 What is Lean?

Lean| is an interactive theorem prover. Here, ‘theorem prover’ does not mean
that Lean can automatically prove theorems, but rather that it can verify the
validity of the proofs that you provide it. The word ‘interactive’ means that
Lean can help you during the construction of a proof, by providing you the
current state of the proof, giving you suggestions as to what to do next, and

sometimes even automatically proving parts of the theorem for you.

Mathlib is a mathematical library written in Lean, by mathematicians of the

Lean community.

There are other theorem provers, such as |Coql, Aga, Isabelle, HOL||(Light),
Mizar, Metamath, and many more smaller projects, each with their own math-

ematical library.

2 Type theory

The mathematical foundation of Lean is type theory (rather than set theory).
Type theory deals with types, which you can think of much like sets. Further-
more, every object in type theory is a term x of a unique type T, written as

x:T.

In fact, the type T is a term as well, usually of the type ‘Type’, which is also

denoted as ‘Sort 1’. Subsequently, ‘Sort n’ is a term of type ‘Sort (n + 1)’
Type theory consists of the following axioms.

Axiom Product type or function type. Given types A and B, we can

[JE
a:A

construct the product type

https://leanprover-community.github.io/
https://github.com/leanprover-community/mathlib
https://coq.inria.fr/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://isabelle.in.tum.de/
https://hol-theorem-prover.org/
https://www.cl.cam.ac.uk/~jrh13/hol-light/
http://mizar.org/
https://us.metamath.org

or, definitionally equivalent, the type of functions
A — B.

A term f : A — B is also called a function from A to B (note the familiar

notation!). In Lean, this type is denoted either ‘Il (a : A), B’ or ‘A — B’.

Axiom Function application. Let A and B be types, and f : A — B
a function from A to B. Then for all terms a : A, we obtain by function

application a term
f(a): B.
In Lean, we write simply £ a, omitting the brackets.

In general, the operator — is non-associative. However, we will write
A—-B—-C:=A—(B—=C).

This choice is convenient for currying. Set theorist like to write f1 : Ax B — C
for a map that takes two inputs. Type theorists prefer fy : A — B — C, which
is functionally equivalent. Both fi(a,b) and f2(a)(b) produce an element of C'
depending on a and b.

Axiom Function abstraction. Given types A and B, we can construct terms

of A — B using A-abstraction.

Example. For A = B = N, we construct the function x — x-x+3. It is written
in terms of a multiplication function and an addition function on N. In Lean,

we write ‘A (x : Nat), x * x + 3’, where ‘Nat’ is the type of natural numbers.

Example. Given types A, B and C we can construct a function between A —

B — C and B — A — C that swaps the parameters, by
AN(f :A—-B—-C,AX(M®:B), A(@a:4a,fab

Axiom Dependent product types or II-types. The product ‘II (a : A),
B’ defined before is somewhat degenerate. Generally, the factors of the product

may depend on the index term a : A.

Given a type A and a function ¢t : A — Type we define the dependent product

Ht(a).
a:A

type or II-type

)

In Lean, we write ‘II (a : A), t a’.

The dependent product has analogous application and abstraction rules. Note
that it was necessary to first define independent products, as ¢ is given as a term

of such a product.

Note that ‘1 + 3 : Nat’ and ‘2 + 2 : Nat’ denote different terms, but they

should ‘reduce’ to the same term ‘4 : Nat’. For this, we need reduction rules.

Axiom Conversion rules. Any two terms which can be obtained from each
other through one of the following conversion rules, are assumed to be equal by

definition.

e a-conversion: renaming variables. For example, ‘A (x : Nat), x + 1’

can be converted to ‘A (y : Nat), y + 1’.

e [-conversion: applying functions to their arguments. For example, ‘()

(x : Nat), x + 1) 7’ can be converted to ‘7 + 1’.

e n-conversion: notion of extensionality. For example, ‘A (x : Nat), f x’

can be converted to ‘f’.

Axiom Functional extensionality. The 7n-conversion rule follows from [-
conversion combined with a more general axiom: functional extensionality. It
states, as in set theory, that any two functions f,g : A — B are equal if
f(a) = g(a) for all @ € A. To state this axiom properly, we should first treat
logic in type theory.

3 Logic in type theory

Logic can be done in type theory in a very surprising way. The key idea is that

logical propositions are types,

whose terms are proofs of that proposition.

This correspondence between propositions and types is known as the Curry—
Howard correspondence. If you are still thinking about sets, you can think of a

proposition as the set of all proofs of that proposition. In particular,

a proposition is true if and only if it is non-empty.

In fact, this is the definition of truth in type theory.

Now we look at how logical operations, such as A, V, =, V, etc. are encoded in

type theory.

Example. Let P and @) be propositions. Then P and) are non-empty if and
only if P x @ is non-empty. Hence, we define P A @ to be P x Q.

Example. A proof of an implication P = @ can be thought of as a map that
sends a proof of P to a proof of), so we define P = Q as P — Q.

Example. Let P(z) be a proposition for every € X for some set X. An
unorthodox way to write V (z € X), P(x) would be

/\ P(x).

reX
Analogous to the binary A from before, this becomes a II-type in type theory.
Example. We can encode T (true) and L (false) as the types with 1 and 0

terms, respectively, which we construct later. Furthermore, it turns out to be

most convenient to define =P as P — L.

The following table describes the correspondence for most of the important

definitions.
Logic Type theory
proposition P type P
proof of P term p : P
P=Q P—-Q
PAQ PxQ
PvQ@ P+Q
v [I-type
3 Y-type
true unit type
false empty type
not P P — false

Sum types ‘+’ and sigma types ‘X’ will be defined in the next section.

Let’s consider a definition a mathematician would like to make.

Definition (Monoid). A monoid consists of the following data:

. atype M
.amapm: M —-M—-M

1

2

3. aterme: M
4. a proof (i.e. term) of V (abe: M), m(m(a,b),c) = m(a,m(b,c))

5. a proof (i.e. term) of V (a: M), m(a,e) =a Am(e,a) =a

Since propositions are types, we need terms of those types to construct monoids.
This seems to introduce an issue: even if G, m and e remain unchanged, chang-
ing any of the proofs changes the monoid! This problem is solved in Lean by

imposing the following axiom.

Axiom Propositional extensionality. Any two proofs of the same proposi-

tion are equal. Formally,
V (P :Prop) (pq: P), p=gq.

In particular, in the previous example, all proofs of associativity are considered

equal.

4 Inductive types

By default, Lean comes with the types ‘Prop’, ‘Sort 1’, ‘Sort 2’, ‘Sort 3’, etc.
and allows for the construction of (dependent) products. Every other type which

is not of this form is an inductive type.

Inductive types are defined by a list of constructors. This list will be an exhaus-

tive list of all the ways a term of this type can be constructed.
Consider the following inductive type Weekday.

inductive Weekday
monday : Weekday
tuesday : Weekday
wednesday : Weekday

friday . Weekday

|
|
|
| thursday : Weekday
I
| saturday : Weekday
I

sunday : Weekday

It has seven constructors, namely monday, tuesday, etc. As we will see later, it
follows from the aziom of induction (or aziom of recursion) that all terms of

Weekday are of this form, and that they are all distinct.

The constructors of an inductive type are allowed to have inputs. For example,
the integers are defined in Lean as an inductive type.
inductive Int

| of_nat : Nat — Int
| neg_succ_of_nat : Nat — Int

That is, every ‘Int’ is either of the form ‘of_nat n’ or of the form ‘neg_succ_of_nat
n’, for some natural number ‘n’. Mathematically, we say every integer equals

either n or equals —(n + 1), for some natural number n.

This construction can be generalized even further: inductive types are allowed to
take arguments themselves as well. Given two types, we construct their disjoint
union, which we call the sum.

inductive Sum (A B : Type)

| in1 : A — Sum A B
| inr : B — Sum A B

For example, the terms of ‘Sum Nat Int’ are either of the form ‘inl n’ for a

natural number ‘n’; or ‘inr i’ for an integer ‘i’.
Of course, constructors can have multiple inputs. Dual to the (binary) sum we
have the (binary) product

inductive Product (A B : Type)
| mk : A - B — Product A B

whose terms are of the form ‘mk a b’, where ‘a : A’ and ‘v : B’.
Recall the II-type, which given a type A and a map ‘¢t : A — Type’ produces
the type ‘II (a : A), t a’. It also has a dual, the X-type.

inductive Sigma (A : Type) (t : A — Type)

| mk : II (a : A), (t a — Sigma A t)

Here ‘mk’ is a family of constructors indexed by the type A. Terms of ‘Sigma A t’

are of the form ‘mk a b’ for some ‘a : A’and ‘v : t a’.

Even though we talk about inductive types, so far we have not seen any induc-

tion. This comes into play when the constructor has an input of the type that

we are currently defining. The natural numbers are defined as an inductive type
in this way.
inductive Nat

| zero : Nat

| succ : Nat — Nat

This example may be confusing, but essentially it says that any natural number

is either ‘zero’, or the successor ‘succ n’ of a natural number ‘n’.

One way to state the axiom of induction for the natural numbers is as follows:

Let P(n) be a proposition for every natural number n. If P(0) holds, and for
all n € N we have P(n) = P(succ(n)), then P(n) holds for all n € N.

On the other hand, we have recursive definitions of functions:

Let X be a set. Choose f(0) € X, and for all n € N define f(succ(n)) € X in
terms of n and f(n). Then this determines a function f : N — X.

Recall that, in type theory, propositions and sets have a common generalization,
namely a type. Hence, induction and recursion can be seen as special cases of

the same thing.

Axiom Recursion. Every inductive type admits recursion. For the natural
numbers, this comes down to the following theorem:
Nat.rec :

II (¢t : Nat — Sortx), t(0) — (I (n : Nat), t(n) — t(succ(n)) —
II (n : Nat), t(n)

(For now ignore the ‘sort#’, it is a fancy way to write ‘every possible type’.) To
obtain induction from this, take ‘t’ to be the family of propositions ‘P : Nat —

Prop’. This axiom of recursion then simplifies to
P(0) — (Vv (n : Nat), P(n) — P(succ(n)) — V (n : Nat), P(n)

The first argument is a proof of P(0), and the second a sequence of proofs
of the implications P(n) = P(succ(n)) for all n. The result is a proof of
vV (n:N), P(n).

To obtain recursion, take ‘¢’ equal to the constant function ‘A (n : Nat), X’

where X is the codomain of f. Then obtain the more simple

X = I (n: Nat), X — X) — Nat — X

The first argument will be the image of 0, and the second argument is a sequence

of maps g, : X — X. The result is a map f : N — X that is defined by
f(suce(n)) = gn(f(n)).

Some final observations. Recall that we have defined the logical operator A
as a binary product, and that we have defined the binary product as an inductive
type. Axioms from logic such as X, Y F X AY and X AY F X are not axioms in
type theory, but proved. The first statement is just the constructor of A, while

the second follows from recursion. Even equality ‘=’ is an inductive type!

	What is Lean?
	Type theory
	Logic in type theory
	Inductive types

